Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Sports Med Open ; 10(1): 46, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658416

ABSTRACT

BACKGROUND: Several reviews have examined the health benefits of participation in specific sports, such as baseball, cricket, cross-country skiing, cycling, downhill skiing, football, golf, judo, rugby, running and swimming. However, new primary studies on the topic have recently been published, and the respective meta-analytic evidence needs to be updated. OBJECTIVES: To systematically review, summarise and appraise evidence on physical health benefits of participation in different recreational sports. METHODS: Searches for journal articles were conducted in PubMed/MEDLINE, Scopus, SpoLit, SPORTDiscus, Sports Medicine & Education Index and Web of Science. We included longitudinal and intervention studies investigating physical health outcomes associated with participation in a given sport among generally healthy adults without disability. RESULTS: A total of 136 papers from 76 studies conducted among 2.6 million participants were included in the review. Our meta-analyses of available evidence found that: (1) cycling reduces the risk of coronary heart disease by 16% (pooled hazard ratio [HR] = 0.84; 95% confidence interval [CI]: 0.80, 0.89), all-cause mortality by 21% (HR = 0.79; 95% CI: 0.73, 0.84), cancer mortality by 10% (HR = 0.90; 95% CI: 0.85, 0.96) and cardiovascular mortality by 20% (HR = 0.80; 95% CI: 0.74, 0.86); (2) football has favourable effects on body composition, blood lipids, fasting blood glucose, blood pressure, cardiovascular function at rest, cardiorespiratory fitness and bone strength (p < 0.050); (3) handball has favourable effects on body composition and cardiorespiratory fitness (p < 0.050); (4) running reduces the risk of all-cause mortality by 23% (HR = 0.77; 95% CI: 0.70, 0.85), cancer mortality by 20% (HR = 0.80; 95% CI: 0.72, 0.89) and cardiovascular mortality by 27% (HR = 0.73; 95% CI: 0.57, 0.94) and improves body composition, cardiovascular function at rest and cardiorespiratory fitness (p < 0.010); and (5) swimming reduces the risk of all-cause mortality by 24% (HR = 0.76; 95% CI: 0.63, 0.92) and improves body composition and blood lipids (p < 0.010). CONCLUSIONS: A range of physical health benefits are associated with participation in recreational cycling, football, handball, running and swimming. More studies are needed to enable meta-analyses of health benefits of participation in other sports. PROSPERO registration number CRD42021234839.

2.
J Am Nutr Assoc ; 43(1): 92-100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37191618

ABSTRACT

We aimed to perform a systematic review and meta-analysis of caffeine's effects on vertical jumping performance in females, with subgroup analyses for potential moderators, including phase of the menstrual cycle, testing time of day, caffeine dose, and test type. Fifteen studies were included in the review (n = 197). Their data were pooled in a random-effects meta-analysis of effect sizes (Hedges' g). In the main meta-analysis, we found an ergogenic effect of caffeine on jumping performance (g: 0.28). An ergogenic effect of caffeine on jumping performance was found when the testing was carried out in the luteal phase (g: 0.24), follicular phase (g: 0.52), luteal or follicular phase (g: 0.31), and when the phase was not specified (g: 0.21). The test for subgroup differences indicated that the ergogenic effects of caffeine were significantly greater in the follicular phase compared to all other conditions. An ergogenic effect of caffeine on jumping performance was found when the testing was carried out in the morning (g: 0.38), evening (g: 0.19), mixed morning or evening (g: 0.38), and when time was not specified (g: 0.32), with no subgroup differences. An ergogenic effect of caffeine on jumping performance was found when the dose was ≤3 mg/kg (g: 0.21), or >3 mg/kg (g: 0.37), with no subgroup differences. An ergogenic effect of caffeine on jumping performance was found in the countermovement jump test (g: 0.26) and squat jump test (g: 0.35), with no subgroup differences. In summary, caffeine ingestion is ergogenic for vertical jumping performance in females, and it seems that the magnitude of these effects is the largest in the follicular phase of the menstrual cycle.


In the main meta-analysis, which included 15 studies and ∼200 participants, we found a small but very precise ergogenic effect of caffeine on vertical jumping performance in females.In a subgroup analysis for phase of the menstrual cycle, the ergogenic effects of caffeine on jumping performance were the largest in the follicular phase.An ergogenic effect of caffeine was consistently found in analyses for testing time of day (morning, evening, mixed morning or evening, or not specified), caffeine dose (≤3 mg/kg or >3 mg/kg) and test type (squat or countermovement jump).


Subject(s)
Caffeine , Performance-Enhancing Substances , Female , Humans , Caffeine/pharmacology , Performance-Enhancing Substances/pharmacology , Menstrual Cycle , Follicular Phase , Lutein
3.
Med Sci Sports Exerc ; 56(2): 328-339, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37844569

ABSTRACT

PURPOSE: This study aimed to summarize and meta-analyze existing evidence regarding the influence of CYP1A2 genotypes on the acute effects of caffeine for exercise performance and to investigate the interaction between genotype, dosage, and timing of caffeine supplementation. METHODS: Six databases were searched for studies determining the effect of caffeine (except mouth rinsing) on exercise performance between CYP1A2 genotypes. Three-level meta-analyses were performed using standardized mean differences (SMD; Hedge's g ) to determine the effect of caffeine on exercise outcomes within and between CYP1A2 genotypes (AA, AC, and CC). Meta-regressions were performed for dose, timing, and presence of reported conflict of interests (RCOI). A meta-analysis was also performed with placebo values to assess for imbalances between genotypes. RESULTS: Thirteen studies, totaling 119 outcomes and 440 participants, were included (233 AA, 175 AC, ad 34 CC). Caffeine improved performance for AA (SMD = 0.30, 95% confidence interval [CI] = 0.21-0.39, P < 0.0001) and AC (SMD = 0.16, 95% CI = 0.06-0.25, P = 0.022) but worsened performance for CC (SMD = -0.22, 95% CI = -0.44 to -0.01, P < 0.0001). Dose affected only CC, with greater doses generating more positive SMD (CC-dose estimate: +0.19/1 mg·kg -1 body mass, 95% CI = 0.04-0.33, P = 0.01). Timing influenced only CC, with better performance with later onset of exercise after supplementation (CC-timing estimate: +0.01/min, 95% CI = 0.00-0.02, P = 0.02). RCOI only affected SMD of CC (CC-RCOI estimate: -0.57, 95% CI = -1.02 to -0.12, P = 0.01). After excluding studies with RCOI, no influence of genotype was seen (all P ≥ 0.19). Small, nonsignificant differences were seen in placebo between genotypes (SMD AA vs CC: -0.13; AA vs AC: -0.12; AC vs CC: -0.05; all P ≥ 0.26). CONCLUSIONS: Caffeine improved performance for AA and AC but worsened performance for CC. Dose and timing moderated the efficacy of caffeine for CC only. Caution is advised because baseline differences and studies with RCOI could have influenced these results.


Subject(s)
Caffeine , Performance-Enhancing Substances , Humans , Caffeine/pharmacology , Cytochrome P-450 CYP1A2/genetics , Genotype , Exercise
4.
Int J Behav Nutr Phys Act ; 20(1): 127, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858243

ABSTRACT

BACKGROUND: How time is allocated influences health. However, any increase in time allocated to one behaviour must be offset by a decrease in others. Recently, studies have used compositional data analysis (CoDA) to estimate the associations with health when reallocating time between different behaviours. The aim of this scoping review was to provide an overview of studies that have used CoDA to model how reallocating time between different time-use components is associated with health. METHODS: A systematic search of four electronic databases (MEDLINE, Embase, Scopus, SPORTDiscus) was conducted in October 2022. Studies were eligible if they used CoDA to examine the associations of time reallocations and health. Reallocations were considered between movement behaviours (sedentary behaviour (SB), light physical activity (LPA), moderate-to-vigorous physical activity (MVPA)) or various activities of daily living (screen time, work, household chores etc.). The review considered all populations, including clinical populations, as well as all health-related outcomes. RESULTS: One hundred and three studies were included. Adiposity was the most commonly studied health outcome (n = 41). Most studies (n = 75) reported reallocations amongst daily sleep, SB, LPA and MVPA. While other studies reported reallocations amongst sub-compositions of these (work MVPA vs. leisure MVPA), activity types determined by recall (screen time, household chores, passive transport etc.) or bouted behaviours (short vs. long bouts of SB). In general, when considering cross-sectional results, reallocating time to MVPA from any behaviour(s) was favourably associated with health and reallocating time away from MVPA to any behaviour(s) was unfavourably associated with health. Some beneficial associations were seen when reallocating time from SB to both LPA and sleep; however, the strength of the association was much lower than for any reallocations involving MVPA. However, there were many null findings. Notably, most of the longitudinal studies found no associations between reallocations of time and health. Some evidence also suggested the context of behaviours was important, with reallocations of leisure time toward MVPA having a stronger favourable association for health than reallocating work time towards MVPA. CONCLUSIONS: Evidence suggests that reallocating time towards MVPA from any behaviour(s) has the strongest favourable association with health, and reallocating time away from MVPA toward any behaviour(s) has the strongest unfavourable association with health. Future studies should use longitudinal and experimental study designs, and for a wider range of outcomes.


Subject(s)
Activities of Daily Living , Exercise , Humans , Cross-Sectional Studies , Obesity , Adiposity , Sleep , Accelerometry
5.
Eur J Nutr ; 62(7): 2963-2975, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37450275

ABSTRACT

PURPOSE: The aim of this study was to explore the isolated and combined effects of caffeine and citrulline malate (CitMal) on jumping performance, muscular strength, muscular endurance, and pain perception in resistance-trained participants. METHODS: Using a randomized and double-blind study design, 35 resistance-trained males (n = 18) and females (n = 17) completed four testing sessions following the ingestion of isolated caffeine (5 mg/kg), isolated CitMal (12 g), combined doses of caffeine and CitMal, and placebo. Supplements were ingested 60 min before performing a countermovement jump (CMJ) test (outcomes included jump height, rate of force development, peak force, and peak power), one-repetition maximum (1RM) squat and bench press, and repetitions to muscular failure in the squat and bench press with 60% of 1RM. Pain perception was evaluated following the repetitions to failure tests. The study was registered at ISRCTN (registration number: ISRCTN11694009). RESULTS: Compared to the placebo condition, isolated caffeine ingestion and co-ingestion of caffeine and CitMal significantly enhanced strength in 1RM bench press (Cohen's d: 0.05-0.06; 2.5-2.7%), muscular endurance in the squat (d: 0.46-0.58; 18.6-18.7%) and bench press (d: 0.48-0.64; 9.3-9.5%). However, there was no significant difference between isolated caffeine ingestion and caffeine co-ingested with CitMal, and isolated CitMal supplementation did not have an ergogenic effect in any outcome. No main effect of condition was found in the analysis for CMJ-derived variables, 1RM squat and pain perception. CONCLUSION: Caffeine ingestion appears to be ergogenic for muscular strength and muscular endurance, while adding CitMal does not seem to further enhance these effects.


Subject(s)
Performance-Enhancing Substances , Resistance Training , Male , Female , Humans , Caffeine/pharmacology , Cross-Over Studies , Physical Endurance , Double-Blind Method , Muscle Strength , Performance-Enhancing Substances/pharmacology , Eating
6.
J Strength Cond Res ; 37(7): 1350-1357, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37347940

ABSTRACT

ABSTRACT: Rosa, A, Coleman, M, Haun, C, Grgic, J, and Schoenfeld, BJ. Repetition performance, rating of perceived discomfort, and blood lactate responses to different rest interval lengths in single-joint and multijoint lower-body exercise. J Strength Cond Res 37(7): 1350-1357, 2023-The purpose of this study was to examine the effects of different rest interval lengths (RILs) on repetition performance, rating of discomfort, and blood lactate responses during lower-body single-joint and multijoint exercises. This study used a counterbalanced design where each subject performed the Smith machine back squat (BS) and leg extension (LE) using 3 different RIL configurations (1, 2, and 3 minutes) in a randomized fashion. Data collection occurred over the span of 3 separate days. Volunteers were randomly allocated to perform the independent variables (RILs and exercises) in 1 of 12 potential configurations. The initial session was allotted for familiarization with the rating of discomfort scale and 10 repetition maximum testing. The other 2 sessions involved training with the different configurations of RIL length using both the BS and LE. Randomization ensured that the BS was performed first in one of the training sessions and the LE was performed first in the other session. Results indicated that longer RILs had a small positive effect on repetition performance, with longer rest durations allowing for more repetitions compared with shorter durations. The largest difference in repetition performance between RILs was observed between 1 minute and 2-3 minutes rest; there were trivial differences in repetition performance between 2 and 3 minutes rest for both the BS and LE. Blood lactate levels were slightly higher with longer RILs. Overall, BS showed greater increases in blood lactate compared with LE, and these differences were magnified over time. Exercise selection and RIL both influenced rating of discomfort, with LE producing less discomfort than BS and longer RILs reducing perceived discomfort. Our findings suggest that RIL influences the repetition performance, blood lactate, and rating of discomfort responses between single-joint and multijoint exercises.


Subject(s)
Resistance Training , Humans , Exercise/physiology , Exercise Therapy , Lactates , Muscle, Skeletal/physiology , Resistance Training/methods , Rest/physiology
7.
J Strength Cond Res ; 37(8): 1600-1608, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36752756

ABSTRACT

ABSTRACT: Varovic, D, Grgic, J, Schoenfeld, BJ, and Vuk, S. Ergogenic effects of sodium bicarbonate on resistance exercise: a randomized, double-blind, placebo-controlled study. J Strength Cond Res 37(8): 1600-1608, 2023-This study explored the effects of sodium bicarbonate ingestion on muscular endurance, power, and velocity in resistance exercise. Nineteen resistance-trained men ingested either 0.3 g·kg -1 of sodium bicarbonate or 0.21 g·kg -1 of placebo (sodium chloride) 180-60 minutes before exercise. The exercise protocol involved performing 3 sets with 70% of 1 repetition maximum to muscular failure in the bench press and biceps curl exercises. Analyzed outcomes included the number of repetitions performed in every set and throughout all 3 sets. In addition, power and velocity of the repetitions were explored by matching the number of repetitions between the sodium bicarbonate and placebo trials. In the bench press exercise, sodium bicarbonate increased the following: (a) the number of repetitions performed in the third set ( g : 0.30; p = 0.046), (b) the total number of repetitions performed throughout all 3 sets ( g : 0.23; p = 0.04), (c) peak power in the second set ( g : 0.19; p = 0.03), and (d) mean power ( g : 0.23; p = 0.03) and mean velocity ( g : 0.30; p = 0.02) in the third set. We did not find a significant difference between the conditions for any of the analyzed outcomes in the biceps curl exercise. Results indicate that sodium bicarbonate ingestion elicits an ergogenic effect on muscular endurance, power, and velocity in the bench press exercise. Given that ergogenic effects were observed only in the second and third sets, these data suggest that sodium bicarbonate acts by attenuating the suppressive effects of acidosis on muscle contractility.


Subject(s)
Performance-Enhancing Substances , Resistance Training , Male , Humans , Sodium Bicarbonate/pharmacology , Performance-Enhancing Substances/pharmacology , Resistance Training/methods , Exercise , Muscle, Skeletal/physiology , Double-Blind Method , Muscle Strength
8.
Motor Control ; 27(2): 442-461, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36509089

ABSTRACT

The purpose of the present systematic review and meta-analysis was to explore the effects of mental fatigue on upper and lower body strength endurance. Searches for studies were performed in the PubMed/MEDLINE and Web of Science databases. We included studies that compared the effects of a demanding cognitive task (set to induce mental fatigue) with a control condition on strength endurance in dynamic resistance exercise (i.e., expressed as the number of performed repetitions at a given load). The data reported in the included studies were pooled in a random-effects meta-analysis of standardized mean differences. Seven studies were included in the review. We found that mental fatigue significantly reduced the number of performed repetitions for upper body exercises (standardized mean difference: -0.41; 95% confidence interval [-0.70, -0.12]; p = .006; I2 = 0%). Mental fatigue also significantly reduced the number of performed repetitions in the analysis for lower body exercises (standardized mean difference: -0.39; 95% confidence interval [-0.75, -0.04]; p = .03; I2 = 0%). Our results showed that performing a demanding cognitive task-which induces mental fatigue-impairs strength endurance performance. Collectively, our findings suggest that exposure to cognitive tasks that may induce mental fatigue should be minimized before strength endurance-based resistance exercise sessions.


Subject(s)
Exercise Therapy , Muscle Strength , Humans , Exercise , Mental Fatigue
9.
Eur J Sport Sci ; 23(3): 372-380, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35068365

ABSTRACT

The aim of this review was to perform a meta-analysis examining the effects of cold-water immersion (CWI) coupled with resistance training on gains in muscular strength. Four databases were searched to find relevant studies. Their methodological quality and risk of bias were evaluated using the PEDro checklist. The effects of CWI vs. control on muscular strength were examined in a random-effects meta-analysis. Ten studies (n = 170; 92% males), with 11 comparisons across 22 groups, were included in the analysis. Studies were classified as of good or fair methodological quality. The main meta-analysis found that CWI attenuated muscular strength gains (effect size [ES]: -0.23; 95% confidence interval [CI]: -0.45, -0.01; p = 0.041). In the analysis of data from studies applying CWI only to the trained limbs, CWI attenuated muscular strength gains (ES: -0.31; 95% CI: -0.61, -0.01; p = 0.041). In the analysis of data from studies using whole-body CWI, there was no significant difference in muscular strength gains between CWI and control (ES: -0.08; 95% CI: -0.53, 0.38; p = 0.743). In summary, this meta-analysis found that the use of CWI following resistance exercise sessions attenuates muscular strength gains in males. However, when CWI was applied to the whole body, there was no significant difference between CWI and control for muscular strength. Due to the attenuated gains in muscular strength found with single limb CWI, the use and/or timing of CWI in resistance training should be carefully considered and individualized.


Subject(s)
Immersion , Resistance Training , Male , Humans , Female , Exercise , Extremities , Water
10.
Crit Rev Food Sci Nutr ; 63(29): 9859-9874, 2023.
Article in English | MEDLINE | ID: mdl-35475945

ABSTRACT

The interest in the benefits of caffeine in combat sports has grown exponentially in the last few years, evidenced by the significant rise of post-competition urine caffeine concentration. We conduct a systematic review and meta-analysis on the effects of caffeine on different performance variables in combat sports athletes. In total, we included 25 studies. All studies included had blinded, and cross-over experimental designs, and we conducted a risk of bias analysis. For nonspecific outcomes, there was an ergogenic effect of caffeine on vertical jump height (SMD: 0.38; 95% CI: 0.04, 0.71) and reaction time (SMD: -0.98, 95% CI: -1.46,-0.50). For outcomes specific to combat sports, there was an increase in the number of throws with caffeine in the Special Judo Fitness Test (SMD: 0.62; 95% CI: 0.14, 1.09). Caffeine ingestion increased the number of offensive actions during combats (SMD: 0.40; 95% CI: 0.06, 0.74). Caffeine ingestion increased the duration of offensive actions during combat (SMD: 0.58; 95% CI: 0.21, 0.96). Finally, caffeine ingestion increased blood lactate concentration after bout 1 (SMD: 1.35) bout 2 (SMD: 1.43) and bout 3 (SMD: 1.98). Overall, athletes competing in combat sports may consider supplementing with caffeine for an acute increase in exercise performance.


Subject(s)
Athletic Performance , Performance-Enhancing Substances , Humans , Caffeine/pharmacology , Exercise , Performance-Enhancing Substances/pharmacology , Lactic Acid
11.
Nutrients ; 14(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432526

ABSTRACT

This study aimed to explore if the effects of caffeine intake on resistance exercise and jumping performance are moderated by training status. We included ten resistance-trained and ten recreationally active males in a randomized, double-blind, crossover study. Participants were categorized into groups according to their resistance to training experience and muscular strength levels. Exercise performance outcomes included weight lifted and mean velocity during a one-repetition maximum (1RM) bench press and squat; repetitions were performed to muscular failure in the same exercises with 70% of 1RM and countermovement jump (CMJ) height. Exercise performance was evaluated on three occasions, following no substance ingestion (control), caffeine (6 mg/kg), and placebo. There was a main effect on the condition for all the performance outcomes (all p ≤ 0.02), except for the 1RM squat mean velocity (p = 0.157) and 1RM bench press mean velocity (p = 0.719). For weight lifted in the 1RM bench press, there was a significant difference when comparing the caffeine vs. control, caffeine vs. placebo, and placebo vs. control. For weight lifted in the 1RM squat, a significant difference was found when comparing the caffeine vs. control. For muscular endurance outcomes and jump height, a significant difference was found when caffeine was compared to the control or placebo. Effect sizes were trivial for muscular strength (Hedges' g: 0.04-0.12), small for the jump height (Hedges' g: 0.43-0.46), and large for muscular endurance (Hedges' g: 0.89-1.41). Despite these ergogenic effects, there was no significant training status × caffeine interaction in any of the analyzed outcomes. In summary, caffeine ingestion is ergogenic for muscular strength, endurance, and jump height. These effects are likely to be of a similar magnitude in resistance-trained and recreationally active men.


Subject(s)
Performance-Enhancing Substances , Resistance Training , Male , Humans , Caffeine/pharmacology , Cross-Over Studies , Muscle Strength , Exercise , Performance-Enhancing Substances/pharmacology
12.
Article in English | MEDLINE | ID: mdl-36360927

ABSTRACT

This review aimed to explore the effect of resistance training cessation (detraining) on muscle size in older adults. Five databases were searched to find eligible studies. Their methodological quality was assessed using the PEDro checklist. The data were pooled in a random-effects meta-analysis. Six studies, with eight groups, were included in the review. Resistance training interventions lasted from 9 to 24 weeks. The detraining duration was from 12 to 52 weeks. Studies were classified as being of fair or good methodological quality. Compared to the baseline data, muscle size significantly increased following the resistance training intervention (Cohen's d: 0.99; 95% confidence interval: 0.63, 1.36). Compared to the post-resistance training data, there was a significant decrease in muscle size following training cessation (Cohen's d: -0.83; 95% confidence interval: -1.30, -0.36). In subgroup analyses, there was no significant decrease in muscle size following 12-24 weeks of training cessation (Cohen's d: -0.60; 95% confidence interval: -1.21, 0.01). There was a significant decrease in muscle size following 31-52 weeks of training cessation (Cohen's d: -1.11; 95% confidence interval: -1.75, -0.47). In summary, resistance training increases muscle size in older adults. In contrast, training cessation is associated with a decrease in muscle size. However, the loss of muscle size might be related to detraining duration, with greater muscle loss occurring during longer duration detraining periods. Future studies are required to establish the time course of muscle size changes during detraining in older adults.


Subject(s)
Resistance Training , Humans , Aged , Muscle Strength/physiology , Muscle, Skeletal/physiology , Time Factors
13.
Nutrients ; 14(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36364793

ABSTRACT

Several studies have explored the effects of capsaicin and capsiate on endurance performance, with conflicting findings. This systematic review aimed to perform a meta-analysis examining the effects of capsaicin and capsiate vs. placebo on endurance performance in humans. Seven databases were searched to find eligible studies. The effects of capsaicin and capsiate on aerobic endurance (e.g., time-trials or time-to-exhaustion tests), muscular endurance (e.g., repetitions performed to muscular failure), and rating of perceived exertion (RPE) were examined in a random-effects meta-analysis. Fourteen studies (n = 183) were included in the review. Most studies provided capsaicin or capsiate in the dose of 12 mg, 45 min before exercise. In the meta-analysis for aerobic endurance, there was no significant difference between the placebo and capsaicin/capsiate conditions (Cohen's d: 0.04; 95% confidence interval: -0.16, 0.25; p = 0.69). In subgroup meta-analyses, there were no significant differences between the placebo and capsaicin/capsiate conditions when analyzing only studies that used time-trials (p = 0.20) or time-to-exhaustion tests (p = 0.80). In the meta-analysis for muscular endurance, a significant ergogenic effect of capsaicin/capsiate was found (Cohen's d: 0.27; 95% confidence interval: 0.10, 0.43; p = 0.002). When analyzing set-specific effects, an ergogenic effect of capsaicin/capsiate was found in set 1, set 2, and set 3 (Cohen's d: 0.21-29). Capsaicin/capsiate ingestion reduced RPE following muscular endurance (p = 0.03) but not aerobic endurance tests (p = 0.58). In summary, capsaicin/capsiate supplementation acutely enhances muscular endurance, while the effects on aerobic endurance are less clear.


Subject(s)
Capsaicin , Performance-Enhancing Substances , Humans , Capsaicin/pharmacology , Performance-Enhancing Substances/pharmacology , Exercise , Physical Endurance
14.
Nutrients ; 14(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36235804

ABSTRACT

Ballistic exercise is characterized by high velocity, force, and muscle activation. Typical examples of ballistic exercise are jumping and throwing activities. While several studies explored caffeine's effects on throwing performance, the between study findings varied. Therefore, we performed a meta-analysis exploring caffeine's effects on throwing performance (e.g., shot put, medicine ball throw, bench press throw). Seven databases were searched for eligible research. Ten studies (n = 151) were included. In the main meta-analysis, there was a significant ergogenic effect of caffeine on throwing performance (standardized mean difference [SMD]: 0.19; 95% confidence interval [CI]: 0.05, 0.33; p = 0.007). There was a significant ergogenic effect of caffeine in the subgroup analysis for studies that evaluated throwing velocity (SMD: 0.24; 95% CI: 0.10, 0.37; p = 0.0006) and used caffeine doses ≤3 mg/kg (SMD: 0.18; 95% CI: 0.05, 0.31; p = 0.006). There was no significant difference between caffeine and placebo in the subgroup analysis for studies that evaluated throwing distance (SMD: 0.15; 95% CI: −0.09, 0.40; p = 0.22) and used caffeine doses >3 mg/kg, (SMD: 0.17; 95% CI: −0.08, 0.41; p = 0.19). However, after one outlier study was excluded as part of a sensitivity analysis, an ergogenic effect was also observed for throwing distance and caffeine doses >3 mg/kg. Based on the results of this review, we conclude that individuals interested in the acute enhancement of throwing performance may consider caffeine supplementation.


Subject(s)
Athletic Performance , Performance-Enhancing Substances , Athletic Performance/physiology , Caffeine/pharmacology , Exercise , Humans , Muscle Strength , Performance-Enhancing Substances/pharmacology
15.
J Funct Morphol Kinesiol ; 7(4)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36278732

ABSTRACT

This study examined caffeine's effects on isokinetic strength, power, and endurance. The sample included 25 young, resistance-trained males. The participants were tested on three occasions, in a control trial (no substance ingestion) and following the ingestion of 6 mg·kg-1 of caffeine or placebo. Exercise tests involved isokinetic knee extension and flexion using angular velocities of 60° s-1 and 180° s-1. Analyzed outcomes included peak torque, average power, and total work. For knee extension at an angular velocity of 60° s-1, there were significant differences for: (1) peak torque when comparing caffeine vs. control (Hedges' g = 0.22) and caffeine vs. placebo (g = 0.30) and (2) average power when comparing caffeine vs. control (g = 0.21) and caffeine vs. placebo (g = 0.29). For knee extension at an angular velocity of 180° s-1, there were significant differences for: (1) peak torque when comparing caffeine vs. placebo (g = 0.26), (2) average power when comparing caffeine vs. control (g = 0.36) and caffeine vs. placebo (g = 0.43), and (3) total work when comparing caffeine vs. control (g = 0.33) and caffeine vs. placebo (g = 0.36). Caffeine was not ergogenic for knee flexors in any of the analyzed outcomes. Additionally, there was no significant difference between control and placebo. In summary, caffeine enhances the mechanical output of the knee extensors at lower and higher angular velocities, and these effects are present when compared to placebo ingestion or no substance ingestion (control).

16.
Biol Sport ; 39(3): 515-520, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35959339

ABSTRACT

The aim of this study was to conduct a comprehensive examination of caffeine's effects on countermovement jump (CMJ) performance. In this randomized, double-blind, crossover study, twenty-two resistance-trained men (age: 28 ± 5 years; height: 183 ± 5 cm; weight: 79 ± 10 kg; habitual caffeine intake: 127 ± 102 mg/day) performed the CMJ test on two occasions, following the ingestion of capsule containing 3 mg/kg of caffeine or placebo (3 mg/kg of dextrose). Fifteen outcomes derived from the force plate during the CMJ test were analyzed. As compared to placebo, there was a significant ergogenic effect of caffeine for peak force, force at eccentric to concentric action transition, time to peak force, peak power, maximum rate of power development, peak velocity, power at peak force, velocity at peak power, velocity at peak force, and vertical jump height. Effect sizes ranged from 0.11 to 0.38, p-values ranged from 0.048 to 0.002. There were no significant differences between caffeine and placebo for mean force, mean power, time to peak power, impulse at 300 ms, and force at peak power. This study shows that caffeine ingestion impacts a wide array of outcomes derived from the force plate during the CMJ test, not only jump height. From a practical perspective, the findings suggest that: (1) individuals interested in acute increases in CMJ performance may consider caffeine supplementation; and, (2) caffeine intake should be standardized before CMJ testing.

17.
Br J Sports Med ; 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35859145

ABSTRACT

OBJECTIVE: To investigate the effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise (FatOx) and how they compare with the effects of moderate-intensity continuous training (MICT). DESIGN: Systematic review and meta-analysis. DATA SOURCES: Academic Search Ultimate, CINAHL, Networked Digital Library of Theses and Dissertations, Open Access Theses and Dissertations, OpenDissertations, PubMed/MEDLINE, Scopus, SPORTDiscus and Web of Science. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Studies using a between-group design, involving adult participants who were not trained athletes, and evaluating effects of HIIT or SIT on FatOx (vs no exercise or MICT) were included. RESULTS: Eighteen studies of fair-to-good quality were included; nine comparing HIIT or SIT with no exercise and eleven comparing HIIT or SIT with MICT. A significant pooled effect of these types of interval training on FatOx was found (mean difference in g/min (MD)=0.08; 95% confidence interval (CI) 0.04 to 0.12; p<0.001). Significant effects were found for exercise regimens lasting ≥4 weeks, and they increased with every additional week of training (ß=0.01; 95% CI 0.00 to 0.02; p=0.003). HIIT and/or SIT were slightly more effective than MICT (MD=0.03; 95% CI 0.01 to 0.05; p=0.005). The effects on FatOx were larger among individuals with overweight/obesity. CONCLUSION: Engaging in HIIT or SIT can improve FatOx, with larger effects expected for longer training regimens and individuals with overweight/obesity. While some effects seem small, they may be important in holistic approaches to enhance metabolic health and manage obesity.

19.
Biol Sport ; 39(2): 407-414, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35309521

ABSTRACT

The aim of this systematic review was to explore the test-retest reliability of isometric mid-thigh pull maximum strength assessment. We searched through five databases to find studies that examined the test-retest reliability of peak force in the isometric mid-thigh pull exercise. From each included study, we extracted intra-class correlation coefficients (ICC) and/or coefficient of variation (CV). The methodological quality of the included studies was evaluated using the COSMIN checklist. A total of 16 good-to-excellent quality studies were included in the review. When considering results from all included studies, ICCs ranged from 0.73 to 0.99 (median ICC = 0.96), where 78% of ICCs were ≥ 0.90, and 98% of ICCs were ≥ 0.75. The range of reported CVs was from 0.7% to 11.1% (median CV = 4.9%), where 58% of CVs were ≤ 5%. Reliability was also good-to-excellent for both relative and absolute peak force and for both bilateral and unilateral isometric mid-thigh pull tests. The majority of studies did not find significant differences between testing sessions. It can be concluded that the isometric mid-thigh pull maximum strength assessment has good-to-excellent test-retest reliability. The isometric mid-thigh pull maximum strength assessment can be used as a reliable test in sports practice and for research purposes.

20.
Nutrition ; 97: 111604, 2022 05.
Article in English | MEDLINE | ID: mdl-35203046

ABSTRACT

OBJECTIVES: Caffeine ingestion has well-established ergogenic effects for resistance exercise performance. However, the concept of a minimum effective caffeine dose has not yet been thoroughly examined in the literature. Therefore, this review aimed to explore the minimum ergogenic dose of caffeine on resistance exercise outcomes, such as muscular strength, endurance, and velocity, using a meta-analytic approach. METHODS: The search for eligible studies was performed through six databases. The methodological quality of the included studies was assessed using the PEDro checklist. A random-effects meta-analysis was performed for data analysis. Twelve studies that provided caffeine supplementation in doses from 0.9 to 2 mg/kg were included. The studies were classified as being of good or excellent methodological quality. RESULTS: The results revealed an ergogenic effect of caffeine for muscular strength (Cohen d: 0.17; 95% confidence interval [CI], 0.03-0.31; P = 0.02), muscular endurance (Cohen d: 0.21; 95% CI, 0.07-0.35; P = 0.003), and mean velocity (Cohen d: 0.56; 95% CI, 0.12-1.01; P = 0.01). CONCLUSIONS: This review demonstrated an ergogenic effect of very low doses of caffeine on resistance exercise performance. The magnitude of these effects was similar to that previously reported with higher caffeine doses. These findings highlight that the minimal ergogenic doses of caffeine are even lower than previously suggested. Such doses of caffeine can be consumed through a regular diet, because for most individuals, a dose of approximately 1 to 2 mg/kg is equivalent to a dose of caffeine in one to two cups of coffee.


Subject(s)
Performance-Enhancing Substances , Resistance Training , Caffeine/pharmacology , Exercise , Humans , Performance-Enhancing Substances/pharmacology , Physical Endurance
SELECTION OF CITATIONS
SEARCH DETAIL
...